Inertial clustering of particles in high-Reynolds-number turbulence.

نویسندگان

  • Ewe Wei Saw
  • Raymond A Shaw
  • Sathyanarayana Ayyalasomayajula
  • Patrick Y Chuang
  • Armann Gylfason
چکیده

We report experimental evidence of spatial clustering of dense particles in homogenous, isotropic turbulence at high Reynolds numbers. The dissipation-scale clustering becomes stronger as the Stokes number increases and is found to exhibit similarity with respect to the droplet Stokes number over a range of experimental conditions (particle diameter and turbulent energy dissipation rate). These findings are in qualitative agreement with recent theoretical and computational studies of inertial particle clustering in turbulence. Because of the large Reynolds numbers a broad scaling range of particle clustering due to turbulent mixing is present, and the inertial clustering can clearly be distinguished from that due to mixing of fluid particles.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tangling clustering of inertial particles in stably stratified turbulence.

We have predicted theoretically and detected in laboratory experiments a tangling clustering of inertial particles in a stably stratified turbulence with imposed mean vertical temperature gradient. In the stratified turbulence a spatial distribution of the mean particle number density is nonuniform due to the phenomenon of turbulent thermal diffusion, i.e., the inertial particles are accumulate...

متن کامل

An efficient parallel simulation of interacting inertial particles in homogeneous isotropic turbulence

This study has conducted parallel simulations of interacting inertial particles in statistically-steady isotropic turbulence using a newly-developed efficient parallel simulation code. Flow is computed with a fourth-order finite-difference method and particles are tracked with the Lagrangian method. A binary-based superposition method has been developed and implemented in the code in order to i...

متن کامل

Heavy particle concentration in turbulence at dissipative and inertial scales.

Spatial distributions of heavy particles suspended in an incompressible isotropic and homogeneous turbulent flow are investigated by means of high resolution direct numerical simulations. In the dissipative range, it is shown that particles form fractal clusters with properties independent of the Reynolds number. Clustering is there optimal when the particle response time is of the order of the...

متن کامل

Heavy Particle Clustering in Turbulent Flows

Distributions of heavy particles suspended in incompressible turbulent flows are investigated by means of high-resolution direct numerical simulations. It is shown that particles form fractal clusters in the dissipative range, with properties independent of the Reynolds number. Conversely, in the inertial range, the particle distribution is not scale-invariant. It is however shown that deviatio...

متن کامل

Sweep-stick mechanism of heavy particle clustering in fluid turbulence.

It is proposed that the inertial range clustering of small heavy particles in fluid turbulence occurs as a result of the sweep-stick mechanism which causes inertial particles to cluster so as to mimic the clusters of points where the fluid acceleration is perpendicular to the direction of highest contraction between neighboring particles. Direct numerical simulations of inertial particles subje...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review letters

دوره 100 21  شماره 

صفحات  -

تاریخ انتشار 2008